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The elastic deformation of a structural plate #oating on water caused by a translating three-
dimensional load is investigated. The problem is akin to the landing and take-o! of aircraft on
a structural or ice sheet. The initial-boundary-value problem is solved analytically using
a free-surface condition that incorporates the #exural rigidity of the plate. The three-dimen-
sional load is modeled as an axisymmetric, translating pressure distribution. The time-depen-
dent analytical solution is used to obtain the unsteady drag of this moving pressure, if it exists,
as well as its asymptotic behavior at large time. The behavior of the transition of the drag near
a critical speed related to the minimum celerity of the free waves of the hydroelastic system is
examined. Asymptotic analysis shows that the drag attains a discontinuous but "nite value as
the translation speed approaches the critical speed, an essential di!erence from some existing
two-dimensional results. The growth rate of the plate slope is found to be weakly singular, like
log t, for large time. Comparisons with published experimental data for plate deformation are
made for the case of an ice sheet. The agreement is very favorable. Implications on the operation
of #oating runways are discussed. ( 2000 Academic Press
1. INTRODUCTION

MAT-TYPE STRUCTURES are considered to be one of the most promising designs for #oating
airports or runways, particularly in more sheltered areas. Their relatively simple construc-
tion and ease of maintenance o!er distinct advantages. The MegaFloat prototype project in
Japan [see e.g. Watanabe (1996)] is an excellent illustration of this concept. The structure
could be as long as 4 km, as wide as 1 km, but has a draft of only a few meters. These
proportions render the structure to be mat- or sheet-like, which will respond #exurally
under wave excitations, or even under moving loads such as those imparted by an aircraft
during landing or take-o!. Since the wave-induced motion and de#ection can easily impose
sPreliminary paper presented at the 2nd International Conference on Hydroelasticity in Marine Technology,
Fukuoka, Japan, December 1998.
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operational limits on the runway, the response of such a structure to incoming waves has
been a subject of many studies [e.g. Ertekin et al. (1994), Mamidipudi & Webster (1994),
Newman et al. (1996), Kashiwagi (1996), Ertekin & Kim (1999)].

A related issue is the response of the runway to the moving load itself. The #exural
rigidity is typically such that structural waves will be generated, thus inducing additional
drag and undulations that may interfere with the safe operation of an aircraft. Deformation
of such a mat-like #oating structure is akin to the problem of aircraft landing on ice sheets in
Arctic and Antarctic regions. Motivated by an interest in polar expeditions, several major
theoretical and experimental studies have been undertaken to understand the e!ect of
aircraft and vehicle operation on #oating ice (Davys et al. 1985; Schulkes & Sneyd 1988;
Milinazzo et al. 1995). When modeled as a continuous, #exural material, the ice sheet is
found to exhibit structural de#ections which may impede the operation of these natural
runways. The de#ection leads to a critical speed of this structure}#uid system. If the moving
load operates near this speed, according to Kheshin (1963) and Nevel (1970), a steady-state
solution may not exist. This critical speed was identi"ed by Kerr (1983) as one associated
with the minimum celerity C

.*/
of the structure}#uid wave system. In fact, Davys et al.

(1985) argued that the phenomenon was due to an accumulation of the energy near the load
since the group velocity and the celerity have the same value at the critical speed.

The present study is motivated by a concern that the same resonant phenomenon may
cause di$culties on #oating runways. Although the arti"cial #oating runway is sti!er than
ice sheets, the loads applied to the runway are much larger than those on the ice sheet and
the phenomenon of critical speed should not be ignored without a careful study. The
asymptotic results of Schulkes & Sneyd (1988) in two dimensions suggest that the growth of
the surface slope around the loading, thus possibly also the drag on the plate, is unbounded.
This conclusion may need to be suitably modi"ed in the presence of three-dimensional
e!ects since energy can radiate in lateral directions.

In this study, we formulate the time-dependent three-dimensional problem that describes
the deformation of a thin elastic plate #oating on water, with excitation caused by
a translating axisymmetric pressure. After some order-of-magnitude arguments and numer-
ical veri"cation, the model is shown to simplify to a point load translating on a massless,
elastic plate. These reductions are due to the fact that the wavelength of the free waves,
which cause the resonant phenomenon, is much greater than the length scale of the loading
and sheet thickness. With this simpli"cation, all the nondimensional physical variables can
be represented as functions of a single parameter,;

D
";/C

.*/
, where; is the translation

speed of the load. By sacri"cing some details of the problem, we obtain explicit formulas for
speed, wavelength, steady drag, and maximum de#ection at the critical speed, which can be
used to estimate the performance of #oating runways at this resonant condition.

The solution of the unsteady-#ow problem is obtained following the procedure of Yeung
(1975), who considered arbitrary planar motion of a pressure distribution on the water
surface. The #oating elastic plate is modeled in the same manner as Davys et al. (1985). An
explicit solution for the load translating with uniform speed after "nite period of acceler-
ation is derived. The solution can be decomposed into three parts, representing the
contributions from the initial de#ection, initial acceleration, and uniform-speed translation.
However, further analysis is made only on the uniform-translation part since our primary
goal is to study the resonant phenomenon due to translation at critical speed. Asymptotic
analysis is made for the time-dependent solution to obtain steady and asymptotic behavior
of drag and de#ection at large time. The asymptotic result shows that the time rate of
growth of the de#ection at the critical speed is weaker than that in two dimensions and the
loading achieves a steady drag for all speeds. Some testing of this theory is made by
comparisons with certain existing measurements from ice sheets.
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2. FORMULATION OF THE PROBLEM

Consider an in"nite isotropic elastic plate of mass m (per unit area) #oating on an in"nitely
deep, inviscid, #uid of density o, as shown in Figure 1. A Cartesian coordinate system Oxyz
is de"ned here with the z-axis directed vertically upward and the Oxy plane being the still
interface between the water and the plate. We will investigate the de#ection of the plate
caused by an axisymmetric moving load translating along the x-axis with velocity X(t),

p"p (rN )"p (JxN 2#y2). (1)

Here, xN ,x!X(t) and rN,JxN 2#y2 are introduced to de"ne a moving Cartesian coordi-
nate system OM xN yz and a polar coordinate system OM rN hM where the origin is "xed to the center
of the loading. The motion of the load is given di!erently in two phases of motion as shown
in Figure 2:

XQ (t)"G
;t/t

s
, t(t

s
;, t't

s

, X (t)"G
(;/2t

s
) t2, t(t

s
;(t!t

s
)#1

2
;t

s
, t't

s
.

(2)

The load translates with a constant speed,;, after accelerating during the period 0(t(t
s

with uniform acceleration ;/t
s
.

The loading function p(rN ) is parametrically represented as

p (rN )"
P

R
f A

rN
RB (3)

using the magnitude of the loading P (e.g. total weight of load) and an e!ective radius of the
loading R. The function f determines the shape of the loading and is normalized as
Figure 1. Coordinate system: (a) plan view; (b) elevation.



Figure 2. Time history of velocity of pressure loading.
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2n:=
0

f (rN )rN drN"1. For an example, we can take f as a Gaussian distribution,

f (rN )"e~nrN 2, (4)

which was also used in two-dimensional analysis of Kim & Webster (1998). In this case, the
e!ective radius R is de"ned such that 95% of the loading is con"ned in the region rN(R.

We assume that the draft of the plate, d, is su$ciently smaller than the length of the waves
caused by the moving load, so that we can use thin-plate theory to describe the vertical
de#ection of the plate, w(x, y, t). The equation of motion of the plate is given by the
thin-plate equation [see, e.g., Davys et al. (1985)]:

mw
tt
#D*2w#ogw"!o/

t
D
z/0

!p, (5)

where *,L2/Lx2#L2/Ly2 is the Laplacian operator de"ned on the horizontal plane and
D"EI/(1!l2) (E being Young's modulus, I the moment of inertia of the plate section per
unit width, l the Poisson ratio) is the #exural rigidity of the plate; /(x, y, z, t) is the velocity
potential of the irrotational #ow under the plate. We assume further that the load starts
from the rest. Then the initial condition can be given as

w(x, y, 0)"w
0
(x, y), w

t
(x, y, 0)"0, (6)

where the initial de#ection w
0

can by obtained by solving the static equation

D*2w
0
#ogw

0
"!p. (7)

The velocity potential / (x, y, z, t) should satisfy the Laplace equation in the #uid domain
with no-leak conditions under the plate surface:

+2/"0, z(0, (8)

/
z
"w

t
, z"0, (9)

D+/DP0, zP!R. (10)

3. SOLUTION BY FOURIER TRANSFORMS

It is common to obtain solution of the formulated problem in Section 2 by Fourier
transforms [see, e.g. Yeung (1975), Schulkes & Sneyd (1988)] since all boundary conditions
are applied on planar surfaces. As a solution procedure for the equations of motion given in
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the previous section, we adopt the method of Fourier transformation following Schulkes
& Sneyd (1988). Taking the Fourier transforms of equations (5), (8) and (9), we obtain

mwJ
tt
#(Dk4#og)wJ "!o/I

t
D
z/0

!pJ exp[(ik cos a) X(t)], (11)

/I
zz
!k2/I "0, z(0, (12)

/I
z
"wJ

t
, z"0, (13)

respectively. Note that in this frame of reference, the speed of the load p is implicitly
contained in X(t). Here, the transformed variables wJ , /I and pJ are de"ned as

wJ (k, a, t)"P
=

0
P

2n

0

w (r cos h, r sin h, t) e*kr #04(a~h) r dh dr,

/I (k, a, z, t)"P
=

0
P

2n

0

/ (r cos h, r sin h, z, t) e*kr #04(a~h) r dh dr,

pJ (k)"P
=

~=
P

2n

0

p (r) e*kr #04(a~h) r dh dr"2n P
=

0

rp(r) J
0
(kr) dr, (14)

where we have adopted cylindrical coordinates (r, h, z) in the physical space and (k, a, z) in
the transformed space; J

0
is the Bessel function of order zero.

From equations (12) and (13) we can obtain

/I "
wJ

t
k

ekz. (15)

A substitution of equation (15) into equation (11) yields the equation of motion of the plate
in the transformed space:

M (k)wJ
tt
#K(k)wJ "!pJ (k) exp[(ik cos a)X (t)], (16)

where

M(k),m#

o
k

, K (k),Dk4#og. (17)

The solution of equation (16) is given by

wJ "!

pJ (k)

M(k)u(k) P
t

0

sin u(t!q) e*k #04 aX(q) dq#wJ
0
(k) cos ut, (18)

where

u(k)"S
K

M
"kS

Dk4#og

mk2#ok
, (19)

and wJ
0
(k) can be obtained from the static solution of equation (16) as

wJ
0
(k)"!

pJ (k)

K(k)
"!

pJ
Dk4#og

. (20)
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Taking the inverse Fourier transform, we obtain

w"!

1

4n2 P
=

0

kpJ
Mu P

t

0

sin [u(t!q)] P
2n

0

e*k[(x~X(q)) #04a`y 4*/a] da dq dk

#

1

4n2 P
=

0

kw8
0

cos ut P
2n

0

e*kr #04(h~a) da dk

"!

1

2n P
=

0

kpJ
Mu P

t

0

sin [u(k)(t!q)] J
0
[kJ(x!X (q))2#y2] dq dk

!

1

2n P
=

0

kpJ
K

(cos ut) J
0
(kr) dk, (21)

where the second term of equation (21) represents the transient e!ects from removing the
static distribution at t"0.

The drag force F
x

on the moving load is given by

F
x
"P

=

~=
P

=

~=

pw
x
dx dy"

1

4n2 P
=

0
P

2n

0

e*kr #04aX(t) pJ *wJ
x
k da dk

"

1

2n P
=

0
P

t

0

k2 DpJ D2
Mu

sin[u(t!q)] J
1
[kMX(t)!X(q)N] dq dk

#

1

2n P
=

0

k2 DpJ D2
K

(cos ut) J
1
[kX(t)] dk (22)

after the expression in equation (21) is used. Here * indicates complex conjugate.
The time-convolution integrals in equations (21) and (22) can be written more explicitly

after a substitution of the translation history de"ned by equation (2). When this is carried
out, the resulting expression will typically consist of three terms, one each for the initial
de#ection associated with w

0
, the acceleration-phase, and the constant-speed phase of the

load. In particular, the drag on the moving load can be shown to be of the form

F
x
(t)"Fi

x
(t)#Fa

x
(t)#H(t!t

s
)Fu

x
(t!t

s
), (23)

where H(t) denotes the Heaviside step function:

H(t)"G
0, t(0,

1, t50.

The initial-de#ection term Fi
x
(t), and the acceleration-phase term Fa

x
(t) were recently

assessed by Kim & Webster (1988) for a two-dimensional moving pressure problem. As
in their case, it was observed that during the accelerating stage, the moving load soon
overtook the wave disturbances associated with the initial de#ection and the acceleration
terms. As a result, surface waves do not accumulate around the loading area, thus
contributing minimal e!ect on the drag. After the constant-speed phase is reached, however,
the waves traveling with the same speed as the load accumulate in the load area and
contribute signi"cantly to the drag and de#ection around the load. The behavior of the
constant-speed term Fu

x
(t) requires therefore more careful consideration. Fu

x
(t) can be

evaluated and expressed as follows:

Fu
x
(t)"

1

2n P
=

0
P

t

0

k2DpJ D2
Mu

(sin uq) J
1
[k;q] dq dk, (24)

which is the focus of our next discussion.
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4. DRAG ON THE MOVING LOAD

The drag component Fu
x
(t) could also be interpreted as the force associated with a load

starting impulsively from rest at time t"0. Typically, this term approaches an asymptotic
(steady) constant value but with oscillations. To understand the behavior of the drag,
it su$ces to investigate just Fu

x
(t) alone as the transient terms in equation (23) eventually

decay in time.

4.1. DISPERSION RELATION

It is helpful to recall the dispersion properties of free waves arising from dispersion relation
(19). The celerity C(k)"u/k and the group velocity C

g
(k)"du/dk are given by

C(k)"u/k"S
Dk4#og

mk2#ok
, C

g
(k)"

o2g#Dk4(4mk#5o)

2(Dk5#ogk)1@2(mk#o)3@2
, (25)

and are shown in Figure 3.
The celerity has a minimum value C

.*/
at k"k

c
, where

dC

dk
"

Dk4 (2mk#3o)!og(2mk#o)

2k(Dk5#ogk)1@2 (mk#o)3@2
"0 (26)

and

C(k
c
)"C

g
(k

c
)"C

.*/
, CA(k

c
)"

u(k
c
)

k
c

. (27)
Figure 3. Phase and group velocity of structure}#uid system.



TABLE 1

Some typical dimensions and material properties of #oating elastic plates

Case Ref. Material d D m C
.*/

(m) (Nm) (kg/m2) (m/s)

1 Kashiwagi (1996) Steel 5)0 2)0]1011 5)1]103 33
2 Schulkes & Sneyd (1988) Ice 2)5 9)8]109 2)3]103 23
3 Yago & Endo (1996) Steel 2)0 8)0]109 5)1]102 23
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The group velocity has also a minimum value C
g.*/

, which is less than C
.*/

. When k(k
c

the wave system has features like gravity waves: the group velocity is less than the celerity
and celerity decreases as k increases. When k'k

c
the wave system behaves like elastic

waves: the group velocity is higher than the celerity, which increases as k increases. As
a result, if the load speed ; is greater than C

.*/
, there are two wave components that can

have the same celerity as shown in Figure 3. We denote the wave numbers of the
components as k

1
and k

2
. These two components are responsible for the transverse waves

downstream and upstream of the disturbance, respectively. When ;'C
g.*/

the group
velocity can match the load speed at k"k

A
and k

B
, which are wave numbers of wave

groups responsible for the asymptotic oscillation in drag, as will be seen later.
The critical speed and corresponding wavelength, for three di!erent con"gurations of

elastic plates, are given in Table 1. In each case, the thickness of the plate is much less than
the wavelength (k

c
d@1), which justi"es the thin-plate assumption adopted earlier. Another

consequence of this fact is that we can neglect the inertial force due to the mass of the plate
since it is much less than the inertial force due to #uid motion.

The ratio between these two inertial forces is mk
c
/o"k

c
d, which can be neglected from

the thin-plate assumption already introduced. Hereafter, we neglect the mass of the plate
without signi"cant loss of the quality of the solution. The e!ects of mass will also be
discussed in connection with the results in Figure 4. Under this assumption, the critical
speed and the corresponding wave number can be obtained from equations (25) and (26) as

k
c
"A

og

3DB
1@4

, C
.*/

"2A
g3D

33oB
1@8

K1)325 A
g3D

o B
1@8

, (28)

where the &&K'' sign means &&equal within the given signi"cant digits''. The minimum group
velocity C

g.*/
can be also obtained by di!erentiating C

g
(k) given in equation (25) and setting

it equal to zero:

C
g.*/

"0)8779 A
g3D

o B
1@8

. (29)

4.2. STEADY-STATE OR LIMITING DRAG

We will "rst obtain the steady or limiting drag, if it should exist, for the critical condition of
;"C

.*/
. As tPR the time convolution that appears in equation (24) has the limit

P
=

0

sin uq J
1
(k;q) dq"G

C

;kJ;2!C2
, ;'C,

0, ;(C.

(30)



Figure 4. Steady drag of a Gaussian load and a point load: (a) R"10 m; (b) R"20 m. ** Case 1;
- - - - - Case 2 ) ) ) ) ) ) Case 3; , point load.
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(Gradshteyn & Ryzhik 1965). When ;'C
.*/

, C(k)(; in the interval k
1
(k(k

2
.

However, when ;(C
.*/

, C(k) is always greater than ;. As a result, we have the steady
drag given by

Fu
x
(R)"G

0, ;(C
.*/

,

1

2n; P
k2

k1

DpJ D2

MJ;2!C2
dk, ;'C

.*/
,

(31)

which has a "nite discontinuity at ;"C
.*/

. The "niteness of the discontinuity can be
shown by taking the limit of equation (31) as; approaches C

.*/
from above. To see this, we

observe that when k is close to k
c
, C(k) can be expanded as

C(k)"C
.*/

#

1

2
CA (k

c
) (k!k

c
)2#2. (32)
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When; is greater than C
.*/

by a small positive amount d;, k
1

and k
2

can be obtained by
evaluating the right-hand side of equation (31) at C

.*/
#d;:

;"C
.*/

#d;, (33)

k
1
"k

c
!dk, k

2
"k

c
#dk, (34)

dk"A
2d;
CA(k

c
)B

1@2
"A

2k
c
d;

uA(k
c
)B

1@2
. (35)

Using equations (32)} (34), we obtain the limit of the drag when; approaches C
.*/

from
above as

F
c
, lim

UBC.*/

Fu
x
(R)

"

1

2nC
.*/

lim
dk?0

P
dk

~dk

DpJ (k
c
)D2

M(k
c
)J2C

.*/
Jd;!1

2
CA (k

c
) k2

dk

"

DpJ (k
c
)D2

2nC3@2
.*/

MJCA(k
c
) P

dk

~dk

1

Jdk2!k2
dk

"

Jk
c
DpJ (k

c
) D2

2C3@2
.*/

MJuA(k
c
)
. (36)

Since uA(k
c
) is greater than zero, it con"rms that the discontinuity is "nite in value. If we

substitute equation (28) into equation (36), we have

F
c
"

0)1343 DpJ (k
c
)D2

(ogD3)1@4
. (37)

However, from equation (3) we have pJ (k
c
)"PfI (k

c
R). Further, we can assume that the radius

of the loading is much smaller than the length scale of the de#ection, i.e., k
c
R@1. Under this

circumstance, the loading can be treated as a point load of magnitude P, i.e.,
pJ (k

c
)+PfI (0)"P and the drag at critical speed given by equation (37) can be expressed

rather simply as

F
c
"

0)1343P2

(ogD3)1@4
. (38)

We note that for point loading, equation (31) can be written as

Fu
x
(R)"

33@8P2

4n (ogD3)1@4 P
Q(k)'0

k3@2

JQ(k)
dk,

Q(k)"
4

33@4
;2

D
k!(k4#1),

;
D
,

;

C
.*/

"

33@8o1@8;

2g3@8D1@8
, (39)

which indicates that the steady drag normalized by P2/(ogD3)1@4 can be given as a function
of a single parameter, the nondimensionalized speed ;

D
. Note that ;

D
"1 when ;"C

.*/
and ;

D
"0)6627 when ;"C

g.*/
from equation (29). The steady drag for point loading is
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evaluated using the formula given exactly by equation (39) and plotted in Figure 4. This
drag is compared with those obtained using the Gaussian loading given by equation (4), for
two di!erent values of R which are chosen unrealistically large, and the three cases given in
Table 1. The cases with the Gaussian loading contain the e!ects of the mass of the plate. It
can be seen that the neglect of the mass of the plate and replacement of the distributed
loading by a point do not a!ect the qualitative feature of the phenomenon. The quantitative
estimation of the drag by the point-loading formula is quite reasonable except for the
Mega#oat case where the wavelength on the plate is shorter than for the other cases.

4.3. ASYMPTOTIC TRANSIENT BEHAVIOR OF DRAG

To evaluate the large-time behavior of equation (24), the method of steepest descent
[e.g. Lighthill (1978)] can be used. Using the large-argument representation of the Bessel
function, we can deduce the following limiting behavior of the following integral as tPR:

P
=

0

A(k) sin ut J
n
[k;t] dk

& +
$u@$k D

k/ki/U
C

A(k)

tJk DuAD;
sin G(u!k;) t#

nn
2
#(1#sgn uA)

n
4HD

k/ki

(40)

for any nonsingular bounded function A (k). Note that the stationary points are exactly
those designated earlier in Figure 3 as k

A
and k

B
, with the proviso that; is greater than the

minimum group velocity, C
g.*/

. If ; is less than C
g.*/

these stationary points do not exist
on the real k axis and the integral decays exponentially as tPR.

Using the above formula (for n"1), we can derive the following asymptotic expression
for Fu

x
(t):

Fu
x
(t)"Fu

x
(R)!P

=

t

d

dt
Fu
x
(t) dt

&F
x
(R)#

1

2nJ; C
Jk

A
DpJ

A
D2

M
A
C

A
J DuA

A
D
Ci[(u

A
!k

A
;) t]

!

Jk
B
DpJ

B
D2 sgn(u

B
!k

B
;)

M
B
C

B
J DuA

B
D GSi [ Du

B
!k

B
;Dt]!

n
2HD , (41)

where M
A
,M(k

A
), C

A
,C(k

A
), with other variables having subscripts A and B similarly

de"ned. Here, the functions Ci(t) and Si(t) are cosine and sine integrals:

Ci(t)"c#log t#P
t

0

cos q
q

dq,

Si(t)"P
t

0

sin q
q

dq, (42)

where c is the Euler constant (Abramowitz & Stegun 1970).
In Figure 5, the time histories of drag, evaluated by numerical integration of equation (24),

are plotted for various load speeds. Gaussian quadrature is used for the numerical integra-
tion, after deforming the integral path in the complex k-plane to avoid high oscillation of the



Figure 5. Time history of drag: (a);
D
"0)0; (b);

D
"0)75; (c);

D
"1)0; (d);

D
"1)25. Thin straight lines are the

limiting steady-state drag; ** numerical integration; - - - - - - asymptotic expansion.
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integrand for large time t. When ;'C
g.*/

, or equivalently ;
D
'0)663, the numerical

results are compared with the asymptotic formula given by equation (41). When ;(C
.*/

the drag attenuates rapidly after the "rst peak and approaches zero exponentially with
alternating signs. When;'C

.*/
the asymptotic large-t formula compares well with results

obtained by numerical integration except, of course, for small t. In these "gures, the steady
drag as discussed in Section 4.2 is indicated by a thin straight line. The time-dependent drag
converges to the steady drag except when ;

D
"1. The drag converges to F

c
/2, rather than

its steady value F
c
. This is the appropriate behavior if one recognizes that the drag

experiences a discontinuity at ;
D
"1 and can be further substantiated by more elaborate

limiting analysis.

5. SURFACE DEFLECTION

The foregoing result that the drag is "nite for all speed ranges, including at the critical
speed, seems to be contradictory to the previous two-dimensional results of Schulkes
& Sneyd (1988) which indicated that the de#ection and the slope of plate surface
increase as t1@2 near the loading when tPR for ;"C

.*/
. Since the drag is

proportional to the slope of the de#ection near the loading, one would expect that the drag
would also increase without bound. This expectation turns out to be not true in our case
here.
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5.1. DEFLECTION AT LOAD POINT AT THE CRITICAL SPEED

For "nite values of xN and y, the growth rate of the de#ection of the plate at large t can be
obtained by applying the asymptotic formula (40) to the expression of the de#ection given
by equation (21):

L
Lt

wu(xN , y, t)"!

1

2n P
=

0

kpJ
Mu

sin ut J
0
[kJ(xN #;t)2#y2] dk

&!

1

2nJ;t C
pJ
A

M
A
C

A
Jk

A
DuA

A
D
sinM(u

A
!k

A
;) t!k

A
xN N

#

pJ
B

M
B
C

B
Jk

B
DuA

B
D
cos M(u

B
!k

B
;) t!k

B
xN ND (43)

as tPR. Note that as in the case of drag, we only need to consider the component
related to the constant speed, which will be denoted as wu in equation (43) and hereafter.
The growth rate in equation (43) is asymptotically one-dimensional in xN . This can be
explained by the fact that the transient part of the de#ection is due to the transverse wave
component k

A
, which propagates with group speed C

g
";, with crest lines normal to the

x-axis.
When;"C

.*/
, we have k

B
"k

c
and u

B
"u

c
in the second term of equation (43). After

performing the necessary time integration, we can obtain:

wu(xN , y, t)&!

pJ
A

2nM
A
C

A
Jk

A
; DuA

A
D
[(Si[t

A
t]!Si[t

A
t
0
]) cos k

A
xN

#(Ci[t
A
t]!Ci[t

A
t
0
]) sin k

A
xN ]

!

pJ
c

2nM
c
Jk

c
;3 DuA

c
D
(cos k

c
xN ) log

t

t
0

#wu (xN , y, t
0
) (44)

for an arbitrary, "nite, reference time t
0
. Here t

A
,u

A
!k

A
;. Note that the "rst term in

equation (44) is regular in t, while the second is logarithmic in time, a weaker singular
behavior than that of the two-dimensional load. It is of interest to note that the singular
term is an even function of xN , thus leading to zero contribution to the drag. This explains
why the drag reaches a "nite steady-state value, even though the de#ection does not tend to
steady state. It is worthwhile to note that equation (44) is valid only near the load. More
detailed analysis is needed to obtain an expression far away from the load.

To assess the growth of this de#ection at the load point for an ice sheet, Schulkes & Sneyd
(1988) introduced an ampli"cation factor, which is de"ned as the ratio of the maximum
de#ection (Takizawa 1985) or stress (Squire et al. 1985) at ;"C

.*/
to that at ;"0. From

our theory, we can develop an estimate of this growth rate by using the asymptotic result of
point loading. The de#ection at;"0 is the static solution w

0
(x, y), which can be obtained

from equation (21) by taking t"0. The de#ection has a maximum value at r"0:

Dw
0
(0,0)D"

P

2n P
=

0

k

Dk4#og
dk"

P

8JogD
. (45)

On the other hand, at large time t, we can assume that the maximum de#ection
for;"C

.*/
is primarily due to the logarithmic term in equation (44). Using equations (25)



Figure 6. The asymptotic behavior of the ampli"cation factor of surface de#ection for ;"C
.*/

: h from
equation (21); ** f

A
"(J2/n) log t/¹

c
#1)5.
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and (28), we can express the de#ection at xN "y"0 as

wu(0, 0, t)&!

P

4nJ2ogD
log t#=, as tPR, (46)

where= is a constant that can be determined numerically by more precise computations.
We have in fact undertaken the numerical evaluation of equation (21) at xN "y"0 to obtain
=. Figure 6 shows the resulting "t of the asymptotic form of the ampli"cation factor f

A
(t).

Thus, we have managed to extract an equation that describes the growth rate at the critical
speed:

f
A
(t),

wu(0, 0, t)

w
0
(0, 0)

&

J2

n
log

t

¹
c

#1)5, (47)

where ¹
c
"n (35D/og5)1@8 is the period of the wave with minimum celerity.

In the Takizawa (1985) experiment, a vehicle traveled about 100 m at constant speed
C

.*/
"6 m/s before reaching the observation point, a travel time of 16)6 s. The #exural

rigidity D, estimated from the critical speed and equation (25), is 2]105 N m, and we have
f
A
"2)3 from equation (47), compared with the observed value of about 3)0. The agreement

is considerably improved compared to the two-dimensional result of Schulkes & Sneyd
(1988), which yielded f

A
"6)6, more than twice the observed value.

5.2. DEFLECTION SURFACE AND PROFILES

Encouraged by the good agreement of the foregoing asymptotic results at the critical speed,
we computed the de#ection pattern for constant speed, wu (xN , y, t), which can be obtained
from equation (21) with X (t)";t, for the case of Takizawa's experiment for two values of
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;
D
. The Fourier integrals were expressed in the Cartesian plane and fast Fourier transforms

were used for computing them. In the interest of brevity, we omit the numerical details
and only show the perspective views for ;

D
"1)5 and ;

D
"1)0 in Figure 7. The

de#ection for ;
D
"1)5 and t/¹

c
"4 can be compared with the experimental result of

Takizawa (1985) at ;"8)9 m/s after the load traveled 100 m. The short wave system in
front of the loading is more apparent than the long wave system downstream, as was
observed in the experiments. Takizawa reported about four wave crests seen in front of the
loading, whereas more than 10 crests are found the computations at larger t. It appears that
the upstream short wave system attenuates faster than the model used here because of the
viscoelastic properties of ice sheets. At this speed, since ;'C

.*/
, the de#ection reaches

a steady state.
When;

D
"1, it is seen that the deformation near the loading is growing logarithmically

as predicted by equations (46) and (47). The value of w
.*/

is normalized by the maximum
static de#ection given by equation (45); its decrease (from !2)9 to !3)5) is consistent with

the logarithmic law: viz. (J2/n) log(8). One also observes, with increasing time, the gradual
evolution of the de#ection "eld to a one-dimensional wave system away from the loading as
depicted by equation (44) and alluded to earlier in Section 5.1. Note that the growing wave
system is symmetric about xN .

To compare with the Takizawa experiment, the behavior of the depression at y"1 m as
a function of ;

D
is shown in Figure 8. The depression was measured when the loading

traveled 100 m (or t"17 s). The overall agreement is good. The peak of the experimental
results is shifted to a slightly lower speed, which is presumably due to the e!ect of
viscoelastic damping, as postulated by Hosking et al. (1988). The undulation of the peak
value in our results is due to the transient disturbances which move at a group velocity
equal to the speed of the loading. When the loading speed is less than the minimum group
velocity, there is no undulation. Near the critical speed, the theoretical result shows slightly
lower values than the experiment, as we have seen in the comparison of ampli"cation factor
in the previous subsection. The wavelength at the critical speed is 17)5 m, which is slightly
longer than the deep water limit for the water depth, H"6)8 m. The somewhat less-
favorable agreement when (;'C

.*/
may be explained by the e!ect of "nite depth.

5.3. OPERATIONS ON FLOATING RUNWAYS

First of all, it is comforting to see from the present analysis that when the aircraft transits
across the critical speed, it experiences only a bounded drag, even though it may be quite
oscillatory in nature. To evaluate the quantitative signi"cance of the resonance phenom-
enon on realistic #oating runways, we estimate the drag, de#ection, and slope at the critical
speed using formulae (37), (45), and (47) and present them in Table 2. For simplicity, we
assume that the loading magnitude P"4)0]106 N, which is a typical maximum take-o!
weight of a Boeing-747. To be conservative, weights on all wheels are lumped together.
The maximum de#ection at the critical speed is obtained by multiplying the ampli"cation
factor from equation (47) for running lengths of 4 km. For a given running length, ¸, the
ampli"cation factor can be given as

f
A
"

J2

n
log

¸

j
c

#1)5, (48)

where j
c
"2n/k

c
is the wavelength of minimum celerity, which is the assumed to be the

critical speed. The maximum slope is obtained by multiplying the wavenumber k
c
by the

maximum de#ection.



Figure 7. Perspective view of hydroelastic waves generated by impulsively started point load. The de#ection is
normalized by the maximum static de#ection. The plotted area is !11)3(x/j

c
(11)3, 0(y/j

c
(7)6. The load is

moving from right to left, with negative x-values to the right. (a) ;
D
"1)5; (b) ;

D
"1)0.
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Figure 8. Comparison of predicted depression depth with the Takizawa (1985) experimental results:**, from
present theory for point load, and s from experimental results.

TABLE 2

Response at critical speed for P"4]106 N

F
c
(N) Dw

0
D
.!9

C
.*/

f *
A

Dw*D
.!9

Slope*
(cm) (m/s) (cm) (%)

Case 1 718 1)1 33 2)1 2)7 0)03
Case 2 6910 5)1 23 2)4 14)0 0)33
Case 3 8160 5)6 23 2)4 16)0 0)40

*Evaluated when loading translated 4 km from impulsive start.
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For the three cases discussed earlier in Table 1, the steady drag is negligibly small.
The drag is about 0)2% of the static weight in the most severe case. The sti!er the
structure, the less the drag. Even so, this could constitute as much as 1% of the
take-o! thrust. The Mega#oat model, Case 3, shows a comparatively larger de#ection
and slope because of its low rigidity, which is expected because it is not a full-scale
runway model. For the more realistic runway, Case 1, the de#ection is 2)7 cm and the
slope is 0)03%, which is not problematic. Thus, for the set of physical properties
speci"ed here, the resonant growth of the de#ection does not appear to a!ect the operation
of the runway, or at worst, only marginally. However, the conclusion may not be valid if the
actual foot-print of the wheels and the "nite-width e!ects of a runway are taken into
account.
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6. CONCLUSIONS

A three-dimensional analysis of the drag and de#ection caused by a translating load on
a #exible runway #oating on deep water is made within the scope of linear thin-plate and
inviscid-#uid theory. Detailed analysis is presented when the load is moving at the critical
speed, which is the minimum celerity of the hydroelastic waves of the plate. Contrary to the
existing prediction of two-dimensional theory that the drag on a two-dimensional load
increases inde"nitely in time, we have shown that a steady drag in three dimensions does
exist at the critical speed. There is a "nite jump at the critical speed, below which there is no
steady drag. On the other hand, the de#ection around the load at the critical speed grows
inde"nitely, as O(log t), which is much weaker than the previously known two-dimensional
results of O(t1@2). The logarithmic growth rate is found to be in good agreement with some
"eld experiments on ice-sheets.

Based on typical dimensions of runways considered here, the resonant phenomenon at
critical speed does not appear to critically a!ect the take-o! operation. Very #exible
structures may be the exception. A meager 1% increase in thrust may be needed to
overcome this additional structural drag. Other factors such as the foot-print shape of the
load and the lateral con"nements of the runway may alter the present conclusions.
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